AD-A163 279 CIRCE A NATURAL LANGUAGE RULE TRANSLATION SYSTEN FOR
INTERSENSOR(U) DEFENCE RESEARCH ESTRBLISHMENT RTLANTIC
DARTMOUTH (NOVAR SCOTIA> J R ELLIS ET AL. NOV 85

UNCLASSIFIED DREA-TC-83/314 F/G 9/2

NL

= .5 &

\\\\\———— o

L2 s e

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CMART

o 3).
UNLIMITED DISTRIBUTION O' e

l* National Defence Défense Nationale

Research and Bureau de Recherche o D
Development Branch et Développment IRV

TECHNICAL COMMUNICATION 85/314
November 13985

CIRCE: A NATURAL LANGUAGE RULE o
TRANSLATIGCN SYSTEM r .
FOR INTERSENSOR '

James R. Ellis - C. Ann Oent

AD-A163 279

DTIC_ , .

QELECTE PEos
, JAN2 31986 hT

B B e
= o
&3 :
s Defence Centre de
£ Research Recherches pour la -
) Establishment Défense LY
Atlantic Atlantique L
“DISTRIBUTION STATEMENT A 2
el lic
Canadd | "750n vaimed

UNLIMITED DISTRIBUTION

. * National Defence Défense Nationale

Research and Bureau de Recherche
Development Branch et Développment

CIRCE: A NATURAL LANGUAGE RULE
TRANSLATION SYSTEM
FOR INTERSENSOR
James R. Ellis - C. Ann Dent

November 1985

Approved by C.W. Bright H/Signal Processing Section

P d
OISTRIBUTION APPROVED BY /? / P4 O

D/UAD

TECHNICAL COMMUNICATION 85/3i4

i
Defence .-, Centre de
Research I v Recherches pour la
Establishment .+ Détense

P

Atiantic "\:-' > Atlantique

x Abstract

"> Circe is a set of functions written in LISP as an experiment in natural language processing.

. It was developed for knowledge acquisition by the Intersensor system, a sonar knowledge-based RO
To inference system. The main function of Circe inputs from either the keyboard or a file a rule :::'.'_ff
written in English and converts it into a LISP-like data structure. This conversion takes place iy

in two steps: the English text is first parsed, and then the relevant information is extracted from
the resulting list and assembled into rules. These rules are then written to a file where they
can be used directly by the inference mechanism of Intersensor without further processing.

e
LAl
T, 0 Ny

[
»

v
»
o

The paper briefly reviews prior research at DREA in this area, and contrasts the current
system with its predecessors. Implementation problems are discussed, and suggestions for

improvements are given. 2 . ' /
g J-‘;),.rr @Iv’ R ards) Sa “_Aﬁa A .
4
X | N~

RESUME

Circe est un ensemble de fonctions rédigées en langage Lisp &
titre d'expériaence de traitement en langage naturel. Il doit permettre o
1'acquisition de connaissances & l'aide du systéme Intersensor, systéme y
d'inférence exploitant une base de connaissances établie 34 1l'aide d‘'un
sonar. La fonction principale de Circe introduit a partir d'un clavier
ou d'un fichier une régle rédigée en anglais et la convertit en une
structure de données se rapprochant d'une structure Lisp. Cette
conversion se fait en deux étapes: le texte anglais fait d'abord l'objet

- d'une analyse syntaxique; ensuite, l'information pertinente est extraite ::::tt':
- de la liste résultante et transformée en un ensemble de ragles. Ces "‘
derniéres sont ensuite versées 3 un fichier ou elles peuvent &tre N '.“-:‘

- c_'.1

LA £, 13

exploitées directement par les dispositifs d'inférence 4'Intersensor.

Dans le document, on analyse briévement la recherche effectuée
antérieurement au Centre de recherches pour 1la défense 1'Atlantique
(CRDA) et on fait le pendant entre le systéme courant et ceux qui ont été
exploités antérieurement. Les problémes de mise en place y sont analysés
et on y fait des suggestions visant & améliorer le systéme.

Jagl N e WRALT & o % b oy i e o

o 4

)
. .
LRy

LR
»

» U

.‘.’ »
b

Yol
A,
i
) R
” K
Contents s
Ly
t‘i, .
Title Page i
Table of Contents iii
1 Introduction ' 1
2 Using Circe . 3
3 The Parser) s
4 The Translator 8
5 DPossible Improvements 11
6 Design and Implementation Considerations 12
7 Conclusion 14 -:::-::
ot
o
Appendix 16 A
NN
A The Grammar Expressed as BNF Rules 16 .
B The Grammar Displayed as a Tree 18 '.::','.::
L
C Examples of the Grammar Implemented in Circe 21 -:'__-i::
D An Example of How the Parser Works 22 _I:.’
E Sample Output 23 i
. F How to make Changes to the System 25 iy
F.1 GrammarChanges 0., 2 ok
F2 Adding New Tests 26 S
F.3 Adding tothe Vocabulary oL 26 .'.t'_‘.:::
.
111 '_i_i'_:ii‘
..:'.H
[.

N - S Vel e WL - R Lol R g B DA Sy SAg N LA

G A Listing of the Parser’s Functions 27

H A Listing of the Translator 33

Accession Fop

RT1S GRAxI Y 4

T7re TaB]

e S

~y e

U=

Unaunng 18 :
b easunncg 3 -
gLt Cavlc
i Steatio YL..._..._----‘_.., :
R — ‘1 Y
Hy j =

R S ’

Didtritusirg., ‘ ~T

| = "-_ ot
/ - - e—— B 5
C ATALLU Ty Coan, ; 5

ERAS O RIS I
CoSpeehal

!
|
-/

f
Uit

v s o . -
EAA - SRR

]

ORI

e 2n

.........

1 Introduction

Circe is an experiment in natural language understanding and processing. It was designed
to be a development aid for Intersensor, a knowledge-based inference system. (See [6] for more
on Intersensor) Circe was developed to allow a sonar expert with minimal computer expertise
to enter rules for the system in English. Circe attempts to convert the English rule into LISP
code that can be used directly by Intersensor. This conversion takes place in two steps; the
rule is first broken down into its component parts of speech and then this parse is analyzed to
extract and organize the relevant information.

There has been other research carried out at DREA with the same goal as Circe. In 1979,
Mark Rodger [9) wrote a context-free parser using Interlisp, for use on the DEC-20 system. The
program allowed the user to enter his own grammar into the system, and to specify whether
the parser was to be goal or event driven (top-down parsing as opposed to bottom-up). The
program has no apparent connection to Intersensor, and went no further than presenting the
results of the parse to the user. Calliope I (7], developed by Jennifer Muise, was a top-down,
left-to-right parser. It was intended as a first step towards a larger system that would satisfy
five goals:

1. Accept English input and have a basic understanding of the words used.

. Parse the input successfully.

2

3. Convert the English rules into LISP code.
4. Make the code accessible to Intersensor.
L3

. Provide an explanation facility for the rules (similar to the query answering system for
MYCIN (3]).

The original Calliope only went as far as the second goal. It parsed successfully a number of
test rules according to a reasonably compiex grammar.

The second Calliope (8] accomplished all but the last goal. Like Calliope I, Calliope
II ’s grammar was implemented using units in the Athena knowledge representation language
[5) . A unit in Athena is a frame-like data structure. For Calliope, the units contained the
name of a part of speech and some information about it. Calliope II could parse a rule using a
slightly revised version of Calliope I s parser, and then insert it into Intersensor’s knowledge
base using Athena. Unfortunately its grammar was by necessity very limited. In contrast,
Circe works with & grammar that is larger than that of the original Calliope, and translates
successfully most of the rules that can be formed using its grammar. Unlike Calllope , Circe
does not attempt any interface with either Athena, or Intersensor.

PR
PRI
T .ll' l', 'j " l‘. "_

* .
A

S,
DA A A
e
C

.............

DA sk el sad i

Chapter II describes a session of Circe. Chapter III and IV discusses design and imple-
mentation details of parser and translater respectively. Chapter V suggests improvements for
Circe while Chapter VI contrasts the current system with its predecessors at DREA.

.l
.
K
-
q

2 Using Circe

Circe has two major components: the parser and the translator. To run the program
the user must first load the file containing the translator (at the time of writing Bl:>jim-
>circe-translator.bin!) and then the file containing the parser and the top-level functions.
(Bl:>jim>circe-parser.bin). Once the files are in the workspace, the user can start the process
by calling the function Circe. The function begins by setting the initial conditions and getting
the first input string. It calls the parser (Perform-test), gives the result to the translator
(Make-rule), and then displays both the resultant LISP code and a translation of that code
back into English. Processing continues with one rule input each loop, until the user signals
that he is finished; at this point Circe prompts for the name of a file in which to write the
rules and the program ends after the writing has been completed.

Immediately after invoking Circe the user is presented with a menu with which he can
change the input and output conditions of the program. The user can specify either terminal
or file input, and whether or not he wishes some intermediate output the program can provide."
He can also change the default file that the program will read from if file input is chosen. It is
important that each rule in the input file specified is followed by a carriage return, as this is the
delimiter Circe recognizes for end of sentence. If the user opts to process rules from-a file, the
program will continue using this method until directed otherwise, although an exception to this
occurs when a rule is not processed to the user’s satisfaction. In this case the program prompts
the user to re-enter the rules via the keyboard. The old rule can be retrieved for editing at
this point by the meta-control-y key sequence. Once the user indicates the rule is satisfactory,
Circe goes back to the file to get the next rule.

The intermediate output that can be requested in the initial menu are tracing messages
and the results of the parser. The result of the parse is a very long list containing a list for each
simple statement in the rule, which in turn is a list of all the parts of speech identified in that
simple statement. This is longer than might be expected. Longer still are the tracing messages,
which the user should almost never have the need to see. The tracing messages give a running
account of where the parser has gone in the parse tree, giving the name of every node it tries
and whether or not each test was successful. Unless something appears to be drastically wrong
with the parse, the user should probably set both of these variables to “No.”

After the input conditions are set, the main loop of Circe begins. Each loop processes
completely one rule. If the user has opted to type in the rules, he will be prompted at the
beginning of the loop to enter a rule, followed by a carriage return. It is important not to hit
the carriage return before the rule is completely typed in because processing starts immediately
after the carriage return is entered. The user can exit the program at this point by typing the
word “stop,” or change the input/output conditions by typing the word “options.” If the rules

YAl filenames, control-keys and other implementation-specific items are in reference to a Symbolics 3600
workstation

LWl

AN

s
v

LK

are being read fron. a file, the user is asked if he wants to process a rule from the file. If he
answers no, he will be asked if he wishes to change the options or stop.

Once Circe has a rule, it calls the method Perform-test of the flavour Sentence-parts,
which does the actual parsing. As each word of the input sentence is encountered and identified,
it is displayed on the screen. If a word cannot be identified, a message is given to the user
telling which word caused the error and one of the parts of speech the word could have been.
It is impossible to tell exactly which part of speech the user meant there to be at that point,
because usually several different parts of speech may be correct at any given point in a sentence.
(See Appendix A for a definition of the current grammar or Appendix B for its graphical
representation.) Occasionally the program may even get offending word wrong, if the program
happened to back up in the parse to try to correct the mistake. If the user has entered a word
not in Circe’s vocabulary, then the appropriate vocabulary list will have to be updated to
include this word, if indeed it should include it. (See Appendix F for the method of updating
the vocabulary.)

v T v
"'
LA

4 .
L

T Te 0T v
et .

If the parse is successful, the program will display the result if the user has requested this,
and will call the translation routine Make-rule. The resulting LISP code will be displayed,
as will the rule translated from LISP back into English. The user should carefully examine
these to be certain that the rule says exactly what he wanted it to say. The program will ask
the user if the rule has been processed correctly; if it has not, Circe will prompt the user to
re-enter the rule. The user must rephrase the part of the rule that was incorrectly interpreted.
Re-entering the same wording will give the same result as the previous parse. This question
does not result in a call to an editing facility; it merely stops the incorrect rule from being
saved. The corrected sentence is treated exactly as if it were a new sentence.

Should the user reply that the rule was correctly processed, the program prompts for an
identifier for the rule. The identifier, the input, and the LISP rule are then put on a list as a
single unit. The main loop is now finished, and Circe again prompts for input. If the current
mode of input is file, and the current file is empty, the user will be informed and asked whether
he wants to change the input conditions or end.

At the end of the session the program requests the name of a file in which to write the
rules. This given, it takes the rules off the list of rules one by one and writes them to the file
specified. (See Appendix E for some sample output rules.) A message is displayed when the
rules have all been written.

3 The Parser

The parser was designed to be as modular as possible. Modularity is desirable in almost
any program, because it ensures that a change in one function will not necessitate a change in

every function even remotely related to it. It also means that functions need not be duplicated R
if they are required in two different places. Modularity was especially desirable in this project O
because the program is an experimental system in a changing environment. If the requirements , '.
of the larger system change it should not be too difficult to change the parser to accommodate E‘

this. Because the parser is separate from the grammar it uses, any grammar could be substituted
for the current one and presumably the system would still function successfully. Similarly, any

one of the tests the parser uses could be substituted by another of the same name without
altering anything else in the system (providing the number of variables passed to it did not R
change). (See Appendix F for the methods to change the current grammar and to add a new FYARA

parsing test.)

The parser uses the recursive properties of Zetalisp to perform a top-down left-to- right R
search. This search is goal-directed; it starts with one goal, and tries to satisfy that before R
it moves on to another. Often a goal will have subgoals which must be satisfied, and these e
in turn will have their own subgoals. The parse is complete wiex the origina goal, that of
“statement,” has been satisfied.

The grammar and the main parsing function are built on the flavour faciiity in Zetalisp. :::.}':
(For more information on flavours, see {10]) Each part of speech in the grammar tree is defined S
as an instance of the flavour Sentence-parts. Each instance contains a variable “parts,” which is e
a list of its subgoals, a variable “test,” which is a list of tests for these subgnals, and a variable NS

called “significant?” which tells whether or not the node is important enough to include in
the parse results. (See Appendix C for examples of this implementation of parts of speech
in the current grammar.) Each of these flavor-instances is in effect a Backus Naur form rule
(for more information on BNF rules, see [4]). The name of the instance is the non-terminal
variable found on the left-hand side of a BNF rule, and the goals on the parts-list form the list e
of terminal and non-terminal variables on the right-hand side of the rule. The parts-list and L
the test-list together form the replacement function for the rule.

The parsing function is a method of the flavour Sentence-parts. Circe sends a message to
the Bavour-instance stmt to perform the generic function Perform-test on itself. Perform-
test gets the parts list and the test list from stmt, and successively applies each test on the list
to its corresponding part on the parts-list. Generally these tests consist of sending a message

- Perfuorm-test to the flavour-instan-e of the part specified, and setting some variables according
to the results. When Perform-test has applied all the tests to the parts list, it returns a result
which indicates whether all of the tests have been satisfied. If they have, then the goal itself has
been satisfied and can be entered on the parse-list. (See Appendix D for a graphical example -
of how the parser works.)

- .

The tests the parser uses can be divided into two types, depending on whether they check
for terminal or non-terminal goals. Man, Opt, Exor, Oob, and Double-list all eventually
result in the message Perform-test being sent to a part, as they all test for non-terminal goals.
List?, Spec?, Number?, and Pnoun? check for the existence of a terminal node, so that no
call to Perform-test is necessary.

All of the first group are, or could have been, built using the one basic function Man.
Man is short for “mandatory”; essentially the function sends a Perform-test to the part
given to it and returns Nil if the test fails. If it succeeds, Man adds an associated pair to the
parse-list containing the name of the successful goal and the number of the simple statement in
which the goal occurred. If the variable significant? of the goal is set to “Nil,” the goal name
will be associated with “D” rather than the simple statement number. This will cause the pair
to be deleted later in the processing. If the goal was satisfied by the existence of a word, the
goal is consed with the word itself.

The test Opt, short for “optional,” could have been written using Man, but was not.
Opt performs basically the same functions as Man, but its results are treated differently by
the Perform-test that called it. This routine is tolerant of failures in an Opt test, whereas
a failure of a Man test signals the failure of the goal. Opt also differs from Man in that it
saves the values of the pointers that tell where the parser currently is in the input sentence. If
the subgoals of an Opt test fail, the position before the initiation of the test can be restored.

The other functions in the first group - Exor, Oob and Double-list - are all based on
the Man test. Exor performs an exclusive-or test on the list of two parts that is supplied to
it. It checks for the first part using Man and if successful, it returns without checking for the
second. If the first test fails the second part is checked for and if this is unsuccessful “Nil” is
returned for the Exor test. Oob is also supplied a list of two parts. It checks for the existence
of one or both of the two parts, in the order they are supplied. Double-list applies the test
Man successively to a list of items, returning after the first successful test. If all of the lists
fail, the test returns “nil.”

The second group of tests - List?, Spec?, Number?, and Pnoun? - all check for the
existance of a certain type of word. List? will compare the word in the input string currently
being examined against each word in a list of words. For example, if the word being identified
was “vessel” and the current goal was a noun, List? would have been given N-list as its input
variable. List? would have compared “vessel” to each word in N-list in an attempt to verify if
“vessel” was actually a noun.

Spec? checks for a specific word. At different places in the grammar tree certain words
must occur, such as “if” at the beginning of a rule. Spec? checks if the word being identified
is the same as the word passed to it. Number? merely checks whether or not the word being
examined is a number (expressed in digits). It has no variables passed to it.

The test Pnoun” is not as simple as the other tests in this group. Pnoun? decides if the
word under consideration is a possesive noun. To do this it checks the list of nouns. Before it
can do this, however, it must remove the trailing apostrophe-s from the word. Since the words
have been converted to symbols to make processing easier, this is impossible. To remedy the
situation, the routine that extracts the words from the input string saves any word with an

...........

apostrophe in a global string variable called Pword. To check for a possesive noun then, the
routine first checks the variable Pword. If it is empty, there is obviously no possesive noun. If it
is not empty, Pnoun? strips off the apostrophe-s, converts the string to a symbol and checks
the noun list for its existence. This routine could be made more general purpose by allowing
the calling function to specify which word list should be checked. In this way the grammar
could conceivably be expanded to handle possessive pronouns and contractions.

All the routines that check for specific words get the next word if the routine successfully
identifies the current one. This is done by calling the function Gettoken, which extracts the
words from the input string using pointers. Gettoken sets a pointer to the first nonblank
character to mark the start of a word, and a pointer to the next blank after that to mark the
end. The pointers leapfrog over each other; each using the other as the starting position for
its search. When the two pointers are set the string delimited by them is extracted. Periods
are trimmed off the ends of the word and a search is made for apostrophes. If one is found,
the string is placed in the global variable pword, and the apostrophe is converted to a number
sign. After this the routine checks if the string is a number expressed in digits, in which case
it is left as is. Otherwise, the program converts the string into a symbol and places it in the
global variable Word.

The final output of the parser is a list detailing the results of the search through the
grammar tree. The words “if”, “premise”, “then”, and “action” are all on a separate list inside
the parse list, as are the elements of each simple statement. Each simple statement list contains
a cons for every part of speech that was identified in the statement, in the order in which they
occurred. This parse-list still contains all the conses marked with a D; they are eliminated later
by the translator.

The output of the parser was originally a hierarchical list that showed more definitely
the relationships of the parts within the sentence. Each node was inside a list of each of its
ancestors, and nodes with the same ancestor were inside the same list. While it was easier to
see the interrelationships within the structure, it was harder to process the structure itself. The
simple list structure that was eventually adopted is far easier to work with. The drawback is
that there is greater potential for misinterpreting the information contained in the list.

If at some time it should prove more useful to adopt the hierarchical structure again, it is
a simple matter of changing the commands in Perform-test, Man, and Opt that deal with
values returned from function calls.

e
.
elely
L]
AW 8
Sl

D
b e
AR
.
[S Wy 3

)
b !

wie ey,

Rt

« 0

CEP A

%N
ey
O

L g

.

4 The Translator

AOR
X
'.~-.ﬂ " I

‘:ﬁ

Once the sentence has been broken down into its component parts of speech by the parser,
the translator must convert this parse into something more useful. The translator must arrange
- the parts in the sentence to form a more uniform representation of the knowledge contained in

. - them. The data structure chosen for this is the familiar object-attribute-value triplet. For this

“- application these triplets are augmented by a variable at the beginning to indicate the relation o
between the attribute and the value, and another variable at the end to indicate the level of i“:‘
confidence attached to the rule. The confidence level is expressed in whole numbers from -100 IS
to 100, depending on the level of certainty required for the rule to be activated. The job of e
the translator is to take the information in the parse and decide which pieces of information fit
where in these pentads.

>
E:‘_".'

w The input to the translator is the list of lists output by the parser. The first list it ignores; —
this contains the word If associated with itself, indicating that the sentence lists that follow
are in the premise clause. The next list will cuntain a simple-statement, and the transiator can RN
begin the process. The processing by the translator takes the form of a large loop, each loop R
transiating completely one simple statement. For each simple statement the translator will S
remove any unnecessary information in the list, classify the statement according to sentence- R
type, and then extract the information necessary to form the relation-object-attribute-value- L_
confidence groups. The first step in this is to remove all the unnecessary associated pairs in SO
the list. The subroutine Killer does this by identifying all the pairs with “D” as their cdr .
and deleting them. The statement is then examined by Classify to determine which type
of sentence it is. Every sentence can be put into one of seven different categories, depending "
on such things as the type of verb used and the parts of speech that follow the verb. Each t-.;
classification is represented by an instance of the flavour Sentence- Types that contains a list of
the distinguishing characteristics and the type of ending the sentence has. o

Having classified the simple statement, the translator begins processing it. The program ey
branches at this point, depending on whether the statement comes from the premise or the e
conclusion. The program assumes it is working on the premise until informed otherwise. It sets F“ 3
the default conditions for premise, and calls the functions Subject, Predicate, and Ending ~—
to extract the information for the relation-object-attribute-value-confidence group. L

Subject finds both the object and the attribute of the sentence or sentence-fragment
supplied to it. The object of the sentence, if there is one, will either appear as a possessive
noun or a noun inside a prepositional phrase. The translator looks for the possessive noun first,

then for a noun before a prepositional phrase (which would be the attribute), and finally for
- the noun in the prepositional phrase. For each noun found Subject calls Extract-Adj to find
any adjectives modifying the noun. A new pentad is created for each adjective located, using
IS-SAME as the relation, the noun as the object, the type of adjective as the attribute, the
adjective itself as the value and 100 as the confidence level. The translator is able to classify

8
£
o

the adjectives because of the way they are handled by the parser. The adjectives are stored
in the parser’'s vocabulary different lists depending on what type of information they convey.
Because the different lists are arranged in a tree under the same ancestor “adjective,” the parser
creates three conses for each adjective found: one indicating that an adjective exists, the second
giving which type of adjective exists, and the third containing the adjective type again and the
adjective itself. The second cons is deleted by the translator.

Depending on the type of adjective found, the transiator may convert the information to a
more uniform representation. If the adjective is a measurement such as “100 feet,” the program
will look for “feet” in a conversion table and replace it with “ft”. It then concatenates this
with the number so that the measurement can be treated as a single unit. When the translator
finds a measurement it automatically checks for a quality to go along with it, such as *“long”
or “wide.” If it finds one it will try to convert it to a noun, such as “length” or “width,” to be
used as the attribute element of a pentad. If there is no quality in the sentence, the translator
tries to find a default quality for the unit used: the default for “hz” is “frequency.” If this also
fails, the translator uses the generic “measurement” as the attribute.

Regardless of which adjective is found, it is deleted from the sentence so that it will not
be found again by the program. Any pentads that are created for adjectives are placed on a
global list to be dealt with later. If the main object and attribute are found they are placed
in global variables. These may play an important role in further processing, especially if the
next statement contains pronouns. When pronouns are located in a simple statement they are
given the value of whichever noun would normally be expected in their position. For example,
if a pronoun is found in a prepositional phrase it is given the value of the global variable Mobj,
which contains the object of the last sentence. If at the end of all this the program has not
identified the object or the attribute, the defaults “object” and “attribute” will be used.

Having decided on the first two variables, the translator calls Predicate to identify a
relation for the group. If the verb of the sentence is an active verb then this becomes the
relation. If the verb is a copula verb the translator checks for adverbs that could be used in
making the function name of a relational operator. For example, if the copula verb “is” is
followed by the adverb “less-than” the function concatenates these to form the function name
“IS-LESS-THAN.” The program also checks at this point for adverbs that indicate a level of
confidence. These adverbs are converted to numbers (see table 1) and placed in the global
variable Mconf. The default confidence level is always 100 i.e., unless otherwise stated, the
program assumes the input to be completely certain.

If the verb is an active-verb the program checks for other types of adverbs, for example
ones which would indicate speed or direction. It attempts to convert these to their adjective
equivalent, so that “the fast boat” and the boat that “moves quickly” will result in the same
representation.

The final step for sentences in the premise is a call to the function Ending. Ending in
turn sends a message to the instance of the flavour Sentence- Types that represents the sentence-
type of the current statement. The message returns the type of ending the translator should
expect to find. The word that fits this description is put into the global variable Mval. The
routine also checks for a numeric confidence level indicator at the end of the sentence; if found,
the number is placed in the global variables Mconf.

POSITIVELY 100
VERY - PROBABLY 75
PROBABLY 50
POTENTIALLY 25 e
POSSIBLY 0 %5
POTENTIALLY — NOT -25 C R
PROBABLY - NOT 50
VERY ~ PROBABLY - NOT -5
NOT ~100

Table 4.1: Confidence Level Conversions

When the translator has values for the five elements of the rule, default or otherwise, it
puts these elements together on a list. It then forms a larger list with an IS-AND relator at
the beginning followed by the list just created and any other lists that may have been created
because of adjectives or adverbs. All of these together are a summary of the information
contained in a single simple statement. This list is added to a larger list that is composed of
all the simple-statement lists in the premise.

Simple statements in the conclusion may be handled slightly differently. A declarative
statement is treated the same as a statement in the premise. Subject, Predicate, and Ending
are called and the appropriate global variables are set. If the sentence has a copula verb but
no subject, only the subroutines Predicate and Ending are called, and the program assumes

that the subject of the sentence is the same as the last sentence. t,__
For an imperative sentence the translator calls Subject and Find-Action. The latter
function is used exclusively for action verbs in the conclusion of the rule. Because most sentences }I::{::

in the conclusion of the rules are concerned with setting a variable to a certain value, the action
verbs that get the most use are “assign,” “increase,” and “decrease.” These all have the effect
of changing the value of a variable, rather than setting it. The function IS-SAME, however, ot
should be able to both set and change values. Rather than using the action verbs as the relator E:
of the clause, the translator instead converts them into a value. “Increase” is changed to N
ASSIGN-HIGHER-VALUE and “decrease” to ASSIGN-LOWER-VALUE. If “assign” is used,

2 the translator looks for an adjective that indicates level, such as “higher” or “lower.” If one ‘_:::;:j
is found the expression translates to the same as “increase” or “decrease.” If no adjective is RS
found, the value is set to ASSIGN-VALUE. i

All of the conclusion pentads are strung together in the same way as those of the premise, -.._.

and the premise and conclusion are joined to form a single list. This list is returned to the -

calling program. -
. In addition to the function that converts English rule to LISP pentads, there is also a R
5 function that will convert the LISP pentads back into English. Print-Rule forces the different . L
- elements of the pentads into an English template. The function makes no attempt to rejoin e
2 the modifiers with the words modified, printing them instead as separate statements. Each e
- statement is prefixed by a number; statements originating from the same simple statement :::\::
.. have the same whole number prefix. .::-\.:'
10 o
.

t’\q'\:

FIPAY

aoud

? e
£ 4

. W

5 5 Possible Improvements W

N ' e

P O

Many improvements to the Circe system are possible. As is the case with any natural v

;_’. language system the parser could be expanded to allow more varied sentence structures or :_:.s

: parts of speech. It may be useful, for example, to be able to identify possessive pronouns or f:‘l:‘:j

i compound subjects. To be really useful the parser should have a built-in backup system that e

would allow it to try to correct errors it may have made. At present the parser has a very _—

primitive backup system that allows it to return to the point before it started an optional k..

branch. A better backup system would allow the program to return to the last position in the ."ﬂ

parse where a different decision could have been make and restart the parse from there. For :::-.:‘_-
example, if the parser found itself with an error it might backup to an exclusive-or test where MO
a check for the first choice had been successful. It could cancel out the part of the tree that
had been created for that choice and restart the parse by trying the second choice.

An interactive error correction mechanism would be another useful addition to the parser.
If the parser choked on a word it could ask the user if the word was indeed the word he wanted.
If it was, the parser could ask the user to specify how he wanted to use the word (which part of
speech, and any other information that might be useful). A spelling corrector would also help
in identifying unknown words, suggesting to the user words that have similar spellings. The
system could be further sophisticated by suggesting only those words that are grammatically
correct in the context. The most vital, useful addition to the parser would be a facility that
allows the user to change the vocabulary interactively during parsing rather than editing the
vocabulary as a separate task and then rerunning Circe on the parse that failed.

The translator could be improved by making it process simple statements. Although the
parser can handle statements as well as rules, the translator is set up exclusively for rules. If
this change were made the translator could be used for entering simple facts into the knowledge
base, or for accepting information from a sonar operator. The program would be more useful
if it were more modular. This could be done by making more use of the flavour facility of

. Zetalisp. Perhaps each simple statement given to the translator could be classified according e
“ to the different instances of a flavour and processed according to instructions contained within L
- the instance. In any case, the more modular the translator is, the better, because modularity
ensures that the program is more general purpose and certainly more flexible.

The system as a whole would be more useful if a rule editing facility were added. The
optimum is a function that would allow the user to edit rules in an existing rule base. At the
very least the user should be able to edit a rule he has just entered without completely retyping

. the rule. It would not be too difficult to arrange this, given that the LISP-to-English conversion L—-
function provides numbers that correspond to the position of each statement in the LISP list. }'_:Z-f
- For example, the statement numbered 3.2 in the English print-out is the second element of the ::-::3
% third list in the LISP list. This information could be used to extract and edit the appropriate c‘;‘-j
3 list from the LISP expression. E
11 &

6 Design and Implementation
Considerations

Many of the decisions made in the design and implementation of Circe were based on the
performance of Calliope in different areas. Many of the better features of the earlier program
were included in Circe, changed if necessary and improved if possible. Time and limited
resources did not permit this in every case however. For example, Calliope was superior to
Circe in its ability to handle vocabulary. Rather than having the grammar itself contain long
lists of nouns or other words already contained in Intersensor, Calliope used Athena to
consult Intersensor’s knowledge base. This meant that Calliope could understand all the
words contained in Intersensor, with no changes necessary if the vocabulary of Intersensor
expanded or contracted. Calliope was also able to take advantage of Athena’s system for
handling synonyms and abbreviations.

As was noted in the introduction, the grammar of Calliope bad to be severely limited
in order to translate rules. This meant that only a small subset of very simple rules could
be successfully parsed, ennsuring that the input to the tranalator was extremely predictable.
Translation in this case was little more than taking key words out of one template and inserting
them into another. Because Circe’s grammar is comparable to that of the first Calliope,
Circe’s translator had to be more complex to be able to handle less predictable input. The
implementation of the grammar was also changed, as a consequence of the Computer Aided
Detection group of DREA acquiring Symbolics Lisp Workstations. Tue grammar was changed
to take advantage of the flavour facility in Zetalisp, the dialect of LISP that is supported by
Symbolics. Instead of using Athena's units to represent a node in the grammar tres, Circe
uses instances of a flavour. A flavour is basically a user defined data structure. Each occurance
of this data structure is called an instance. Both Calliope and Clrce were based on an object-
oriented approach to programming rather than the conventional function-oriented approach.
This meant that the course of the parse was determined by information contained inside the
data structures, whether units or instances, rather than a clear ssquence of actions in a function.

While both programs were object oriented, Circe was writ'en with a view towards mod-
ularity. It was decided that a system inside an environment as susceptible to change as Inter-
sensor should be as adaptable as possi~le. To achieve this aim the functions in Circe are as
general and as independant as possible. One of the problems with Calliope is that its tests
were too rigidly defined. If a part of speech had two mandatory components followed by an
optional one, there was a test written to check for that sequence. If the part of speech had
one optional test followed by two mandatory ones, there was another test for that sequencs.
For each different combination of parts there was a different test. The parser in Circe only
has tests for individual items; if a part has several components, several tests are called. This
eliminates the need for defining a new test each time a new combination of parts is uesded: the

12

e et

existing tests are simply specified in a list in whatever order is necessary.

In keeping with modularity, the grammar is completely separate from the parser. Either
could be replaced and leave the performance of the other unaffected. The vocabulary is also
separate from the grammar, so that different word lists can be used for different applications.

The possibility of using a transformational grammar for Circe, rather than the simple
context-free grammar now in place, was investigated. Some research had been carried out at
DREA in this area [1] , [2] and some software had been written. The deep-structure represen-
tation that results from a transformational parser certainly has its advantages, especially since
one of the goals of Circe was uniform representation of information. A transformational parser
will give the same parse for two sentences that contain the same information, not matter how
that information is organized inside the sentence. Despite the obvious benefits, it was decided
that limited scope of input allowable by Circe (rules and simple statements) did not warrant
the extra effort necessary to implement a transformational parser. Since uniform representa-
tion was still desired, some transformations are performed by the translator. Whether the word
destined to be the object of the sentence occurs as a possessive noun or inside a prepositional
phrase does not matter: the translator will understand what is meant and both will be repre-
sented the same way. Some transormations are also performed on active verbs and modifiers
to ensure that the final output of the program is uniform.

The translator was originally intended to be as modular as the parser. A flavour named
Sentence- Type was defined, and instances of this each described a possible sentence structure
according to its identifying characteristics. The problem of translating, however, is not as
amenable to the concept of object-centred programming as is parsing. The trauslator does
depend for the most part on a few main functions which are relatively general purpose, but
it is impossible to completely separate the functions from the input when the problem is so
dependant on the input. It could be argued that a parser is just as dependant on the input,
but a parser merely tells the user what exists in the sentence, rather than trying to do anything
with this information. In any case, this particular translator is probably not as modular as it
could be, and any change in the input conditions will necessitate some change, large or small,
in the system.

13

LAPUL I e e A S L g aNeL VL S L A . et S aA Al Ul g LT e g Rt g L N RS A B AR S S <X POrE AL Y

7 Conclusion

Clirce, like its predecessor Calliope, attempts to convert English rules into LISP-like data
structures. Both programs were designed as development aids for the Intersensor knowledge
based inference system. Circe performs the conversion of the rules in two major steps: it
breaks the sentence down into its grammatical components and then using these components
it assembles the relevant information into five-element lists. These processes work on one rule
at a time, entered either by the user via the keyboard, or from a file.

The system is by no means complete or comprehensive. A parser does not exist that can
understand every rule input, and this system is not leading the way. In realistic terms, the
most severe limitation of the parser is its lack of a correction mechanism for decisions. The
grammar can not be expanded much further without either a back-up or a look ahead facility.
The translator is not without its problems either. It does not have the ability to translate single
simple statements, and cannot even translate correctly all of the rules the parser can supply.
This is not to say that the system is without merit; it processes a reasonable variety of rules
quite successfully.

The question could legitimately be raised as to why a natural language understanding
system should be used to solve this problem. No knowledge of the LISP language is needed
to form the output, as the rules are not written in LISP code anyway. The output is merely
a data structure that resembles LISP through its use of lists and parentheses. Presumably a
sonar expert could be taught quite quickly how to organize the information. What then is the
use of this program?

¢ '-‘-'I }'n':-‘

E N}
)

x

One of the main advantages of using the system is the consistency of representation Clrce
affords. If judgements are required as to how the knowledge should best be represented, as
indeed they are, it is best that these judgements be consistent. Unless the same sonar operator
enters every rule for the system, the judgement may not be consistent, and it may not even
be consistant in that instance. The Circe system also ensures that the terminology used is
consistent; any word not in the vocabulary is not understood. The same holds true for the
. function names: Circe acts as a filter for unwanted input. Another advantage of Circe is that
- it tries to store somehow every piece of information entered. Every modifier is represented
in the final output. The system also gives the user a chance to see his rule rephrased in a
way that shows exactly what the rule means (assuming the rule is processed correctly). Even
without the improvements suggested in the previous chapter, Circe will be a useful addition
to Intersensor.

14

mail 3 F g

- v
"‘)1J P -" g

T AT Ju T TN TRV L% Tat » ™ & 'l..'..':k
v .

Bibliography

{1] Bonner, Anthony J. A System for Parsing Natural Language Sentences Using a Chom-
sky Transformational Grammar, DREA Research Note DREA/SP /79/4, November 1979.
“Informal Communication.”

(2] Bonner, Anthony J. Software Support for Transformational Parsers. DREA Research Note
DREA/SP/82/2, February, 1982. “Informal Communication.”

[3] Buchanan, Bruce G., and Edward H. Shortliffe, Rule-based Expert Systems, Reading, Mas-
sachusetts: Addison-Wesley, 1984.

[4] Chomsky, Noam, Syntactic Structures, The Hague: Mouton, 1957.

[5) Dent, C. Ann, and Reid G. Smith 4 Guide to Athena: A Knowledge Representation
Language, DREA Technical Memorandum 83/6, Defence Research Establishment Atlaatic,
Dartmouth, Nova Scotia, October 1983.

[6] Dent, C. Ann, Reflections upon Building a Sonar Ezpert System, DREA Research Note
DREA/SP/85/2, January 1985. “Informal Communication.”

(7] Muise, J. L., Calliope: A Natural Language Rule Interpreter, DREA Research Note DREA/SP/84/2,
April 1984. “Informal Communication.”

[8] Muise, J. L., Calliope II: The Sequel, DREA Research Note DREA/SP/85/3, May 1985.
“Informal Communication.”

[9) Rodger, R. M., A Lisp Paraer for Contezt-Free Grammars, DREA Research Note DREA/SP/79/1,
June 1979. “Informal Communication.”

[10] Reference Guide to Symbolics-Lisp, Cambridge, Massachusetts: Symbolics, Inc., 1985.
[11] Shaw, Harry, Handbook of English, Toronto: McGraw-Hill Ryerson, 1979.

(12] Thomas, Owen, and Eugene R. Kintgen Transformational Grammar and the Teacher of
English. New York: Holt, Reinhart and Winston, 1974.

15

“ e v
L
h P
LR R
NERE]

. Sote
I‘ *u ..-b
. s
: N
- n"..-..
- .'C...-
o - -
! v
l. t.‘.¢

: Appendix A The Grammar Expressed as R
: BNF Rules Y

v

i »

Stmt =3 (/ Rule Simple — Stmt) N
Simple — Stmt => (/ Declarative Imperative) R
Rule => (& {IF} Premise {THEN} Action)
Declarative => (& Subject Predicate (Confidence — Phrase)) e
l Imperative => (Predicate) E?,_y '
g Premise => (Cmpd — Stmt))
Action = (Cmpd ~ Stmt)
Confidence — Phrase=> (& {WITH} Confidence Clevel)
‘ Cmpd ~ Stmt => (& Simple — Stmt (Addl — Stmt))
. Addl — Strat =% (& Conj Cmpd — Stmt) s
. Subject => (Noun — List) 5
Predicate => (/ Active — Pred Inactive — Pred) OO
Noun ~ List => (& Noun - Phrase (Addl — Noun ~ List)) "
Noun ~ Phrase => (& Substantive (Prep — Phrase)) P
Addl — Noun ~ List => (& Conj Noun — List) R
l Substantive => (& (Article) Modified — Noun)
T Article => (article)
> Modified - Noun => (& (Adj — List) (/ Noun Pronoun)) -
o8 Adj - List ==> (& Adj ~ Phrase (Adj — List)) P
X Adj — Phrase ==> (/ Poss — Noun Adjective) T
'. Poss — Noun = (noun+'s) -
2 Adjective => (adjective) o
- Noun => (noun) N
- Pronoun => (pronoun) S
" Prep — Phrase => (& Preposition Substantive) S
F Preposition => (preposition) IRy
- R
;:.' -:_‘»:_'.
- G
. VAt
e -
X :

S
K0,
Appendix A :f:::‘.'_::

Active — Pred => (& Active — Verb — Phrase (Objects)) ':'_:'fj:'
Inactive — Pred => (& Copula — Verb (Copula — Adverb) (Confidence — Level) Completion " :
Active — Verb — Phrase=> (Active —~ Verb (Adverb — Phrase)) Y
Objects => (& (Direct — Object) (Indirect — Object)) St
Active - Verb => (active — verb) Y
Adverb — Phrase => (& Adverb (Adverb — Phrase)) :::::':_-
Adverb => (adverb) AN
Direct — Object => (& Noun — Phrase (Complement)) .
Complement => (Adj - Complement Noun — Complement) -'-:'.f'f.'
Adj ~ Complement => (Adjy — Phrase) e
Noun — Complement => (Substantive)
Indirect — Object ==> (& Preposition Noun — Phrase (Direct — Object)) S
Copula — Verb => (copula - verb) i:“
Copula — Adverb => (copula — adverb) -
Confidence ~ Level => (confidence - level — adverb)
Completion =% (/ Pred ~ Adj Pred — Noun) s
Pred — Adj = (Adj — List) R
Pred — Noun => (Objects) B

[N e U

L -

- -
e b~ .-.“t

. - . »
S ."':."':.
. ':-'\-
N - '_s"".
- A
K t. o

- - -y

R
)
.
.
.
.
.

NN SGUMPARSENEUY AR

e e v .-
"-' el "." O

.
v

Appendix B The Grammar Displayed as a

Tree
STrT
RULE
1
) T 1]
IF PRETISE THEN ACTEON
CMPD- CMPD-
STMT STMT
- =9
SIMPLE~ AQDL-
STMT STMT
CONJ CMPD-STMT
EX~0R
]
I 1
DECLARATIVE IMPEH?TIVE
- == PREDICATE
SUBJECT PREDICATE CONF IDENCE
PHRASE
—— - ﬁ
WITH CONFIPENCE CLEVEL
CONF IDENCE
SYNONYMS

A solid line indicates that the node
is mandatory, while a broken ane means
the part is optional.

18

Appendix B
SUBTlECT
NOUN-
LIIST
I]
EX-OR ADDL-NOUN-LIST
NOUN- PRONQOUN CONJ NOUN-
PHRASE LIST
- T T T
SUBSTANTIVE PREP~
PHR‘ASE

r r]
ARTICLE MODNI&JINED- PREPOSITION SUBSTANTIVE

ADJECTIVE NOUN
LIST

ADJ ADJECTIVE
PHRlASE LIST
EX-OR
{
{)
POSS~ ADJECTIVE
NOUN I
ONEl—OF
’ ! 1 N I 18 i | B
SPEED SIZE COLOUR | LOCATION | PATTERN [DIRECTION { GUALITY |ORDINALITY

MODE ALIGNMENT CLASS STABILITY INTENSITY POWER-SOURCE MEASURE TYPE

NUMBER UNIT

¥

v,
. .
A [y

“ry

‘o , Iy f.
v

L)
.
AR

-r'r"['l.!'l'l
[B Rt B B 4
AR R oS
LN A

s Appendix B

PRED}CATE
- EX-OR
- 1
'_:]]
ACTIVE- INACTIVE-
PRED PRED
- L - - - R B
e r* 1 — r
o ACTIVE~- oauscvs COPULA COPULA CONFIDENCE COMPLETION
- VERB- VERB ADVERB LEVEL]
PHRASE Ex-08 EX-OR
|
7 8]
ACTIVE ADVERB DIRECT- INDIRECT- PRED PRED
VERB PHRASE ‘INDIRECT DIRECT ADJ NOUN
]
r—"L 1 r—l -1 - ADJ- OBJECTS
S ADVERB ADVERB DIRECT INDIRECT INDIRECT- DIRECT- LIST
2N | PHRASE OBJECT 0BJECT OBJECT 0BJECT
ONE-OF
] ,
T 1 PREPCSITION NOUN
DIRECTION { COPULA PHRASE
ADVERB
SPEED NOISE
LEVEL |
NOUN COMPLEMENT
LIST]
EX~OR
- ADJ NOUN
COMPLFMENT COMLEMENT

L ADJU- SUBSTANTIVE
. PHRASE

Appendix C Examples of the Grammar
Implemented in Circe

{defflavor sentence-parts (test parts significant?) ()
:gettaole-instance-variables
sinitable-instance-variables
:settable—-instance-variables)

(defvar stmt nil)

(setq stmt (make-instance 'sentence-parts :test ' (exor)
:parts ' ((rule simple-stmt))
:significant? 'nil

(defvar rule nil)

(setq rule (make-instance ’sentence-parts :test ’ (man man man man)
:parts ' (if premise then action)
isignificant? nil))

(defvar simple-stmt nil)

(setq simple-stmt (make-instance 'sentence-parts :test “(exor)
:parts ’((declarative imperative))
:significant? T))

(defvar declarative nil)

(setq declarative (make-instance 'sentence-parts
s test ' (man man opt)

sparts '(subiect predicate confidence~phrase)
:significant? T))

(defvar imperative nil)

(setq imperative (make-instance 'sentence-parts :test ' (man)
:parts ' (predicate)
:significant? T))

(defvar confidence-phrase nil)

(setq confidence-phrase (make-instance 'sentence-parts
:test ' {opt man man)
:parts ' (With confidence clevel)
tsignificant? t))

21

A I A A S A A Siaadl Sl et tul St Al Sl B

*
¥

l‘).

. ’ s
. n . 2’
S iy »"-" '- .'.-

v

~
¢
'
~"-
2
.
Appendix D An Example of How the
- Parser Works
«
h S
PERFORM-TEST (ACTIVE-VERB-PHRASE)
Tests: MAN OPT
y‘.TIVE'VERB ADVERB-PHRASE
v, MAN (ACT/I'vs-vsRB) OPT (ADVER:-PHRASE)
e PERFORN-TEST (ACTIVE-VERB) PERFORM-TEST (ADVERB-PHRASE) o
tests: LIST? tests: MAN oPT
o parts: ACTIVE-VERB-LIST parts: ADVERB ADVERS-PHRASE
// | /] =
/ / i
LIST? (ACTIVE-VERB-LIST) . MAN (ADVERB) OPT (;DV;RB-PHW-SE) ey
PERFCRM-TEST (ADVERS) PERFORM-TEST (ADVERS-PHRAST)
- tests: DOUBLE-LIST tesis: MAN oPT
T parts: (SPEED NOISE-LEVEL parts: ADVER3 ADVERS-PHRASE
DIRECTION COPULA-ADVERS) / J
s MAN (ADVERB) etc.
DOUBLE-LIST (SPEED NOISE-LEVEL J
DIRECTICN COPULA-ADVERB) etc,
/ X 3
'- .'.-V".*
r:- N
X MAN (s;sso) MAN (NOISE-LEVEL) S
. \‘ g !
PERFORM-TEST {SPEED) eic. L_‘
tests: LIST? -
parts: SPEED
LIST? (SPEED} R
. Cr_
ey
" -":: :..\
a, The arrows i1ndicate either calls to or returns from functions cor, in R ;
2% the case of Perform-test, a message being sent to an instance. -'fu_‘i-
g S
22 NN

r(LM

L S

< ™y
v

Appendix E Sample Output

;:s The following are rules that were generated by Circe and written into a file
;3 The rules have tnree parts to them: a rulec nawe, the original gnglish 1nput,
;:: and the lisp rule generated by the translator.

(TEST-RULEN
IF LCFAR-FEATURE IS WEAK WITH CONFIDENCE-LEVEL 80
THEN IT IS FROM A DISTAMT TARGET.
((IS-AND (IS-AND (IS-SAME LOFAR-FEATURE INTENSITY WEAK 80)))
(IS-AND (CONCLUDE (IS-SAME LOFAR-FEATURE ATTRIBUTE TARGET 100)
(IS-ZAME TARGET QUALITY DISTANT 100Y))))

(TEST-RULE2

IF THE FREQUENCY-SPECTRUM OF THE SECOND MARMONIC-SET 1S WIDE

THEN INCREASE THE SMALLzST INTERVAL OF THE LOFAR-DISPLAY

((IS-AND (IS~AND (IS-SAME HARMONIC-SET FREQUENCY-SPECTRUM WIDE 100)
(IS-SAME HARMONIC-SET ORDIMALITY SECOND 100)))

(IS-AND (CONCLUGE (IS-SAME LCFAR-DISPLAY INTERVAL ASSIGN-HIGHER-VALUE 100)
(IS-SAMZ INTERVAL SIZE SMALLEST 10G))3}))

(TEST-RULE3

IF THE PRCPELLER'S BLADEz ROTATES CUIETLY

THEN DETECTICN OF CAVITATION IS VEZRY-PROBABLY SMALL

{(IS-AND (IS-AND (RCTATES PROPELLER ELADE QUIETLY 100)))
(IS-AND (COMNCLUDE (IS-SAMEZ CAVITATION DETECTION SMALL 75)))))

(TEST-RULES

IF MANY TARGET COMPETE FOR IDENTIFICATION

THEN ASSIGN THE HIGHEST PRICRITY TO THE FASTEST TARGET.

((IS-AND (IS-AND (CCMPZTE TARGET ATTRIBUTE IDEMTIFICATION 1CO)
(IS-SAME TARGET CARDINALITY MANY 100}))

(IS-AND (CONCLUDZ (IS-SAME TARGET PRIZCRITY ASSIGN-VALUE 100)
(1S-SAME PRICRITY CQUALITY HIZIZST 100)
(IS-SAME TARGET SPEED FASTEST 1C60)3)))

;33 The results cof test-ruled may seem & bit confusing. If you exgmine the

;:: 11st closely, howvsver, veu will find that the rule cdoes indeed reflect tha
;:; information 1in the english input

23

'_“.l'
P

Rl
.

o all

a8 b v . .
b, ..".'.)A.."I' * ‘4_'- l‘ .'I PRy

LA RV N S A

e

4y L UMY

»
e 1,

A - o § .
L L A R N PN N LR R L A B e, e n B Ry De I L R L L A AL L P "

Appendix E

(TEST-RULES
IF PLATFORM HAS A STABLE AUXILIARY AND HAS A SINGING PROPELLER
THEN 1T 1S VERY-PROBABLY A SMALL-FISHING-TRAWLER VESSEL
({IS-AND (1S-AND (HAS PLATFORM ATTRISUTE AUXILIARY 100)
(IS-SAMZ AUXILIARY STABILITY STABLE 100))
(IS-AND (HAS ATTRIBUTE ATTRIBUTE PROPELLER 100)
_ (1S-SAME PROPELLER TYPEZ SINGING 100)))
(IS-AND (CONCLUDE (1S-SAME PLATFOPM ATTRIBUTE VESSEL 75)
(IS-SAME VESSEL CLASS SMALL-FISHING-TRAWLER 100))})))

2;; The results of test-ruleb are confusing and gerhaps nol what wee meant

;i by the english 1nput. The confusion results from the small eamount of 1nformat:on
;:;: wngut. The translator has e hard time filling the gaps in information, and as
s:; @ result the second statement 50 the p-emise clause 15 not regresented well.

(TEST-RULESE
1F A LCFAR-DISPLAY HAS A FIGURE-EIGHT PATTERN
UNDER INTERFERENCE-PATTERN
THEN THE SOURCE OF IT 1S THE SMALL RED OSJUECT
BESIDE THE LARGE-COMMERCIAL-SURFACE VESSEL.
((IS-AND (IS-AND (HAS LOFAR-DISPLAY ATTRIBUTE PATTERN 100)
{1S-SAME PATTERN PATTERN FIGURE-EIGHT 100)))
{IS-AND (CONCLUDE (IS-SAMZ TARGET SOURCE OBJECT 100)
(IS-SAME CBJECT SIZE SMALL 1C0)
(IS-SAME 0BUZCT COLOUR RED 100)))))

;:; Test-ruleS 1s the opoosite of test-ruleS, HNere tco mueh infermation
;s was supplied 1n each simple statement. If the user had supplied the rule:

o s
rry
ey

*]f the lorar-gisplay has a figure-eight patiern and the pattern 1s under

interference-pattern then the source of 1t 1s the smell red object and the
object is beside the large-commercial-surface vessel.” the translator would

;5 had performed tetter. Aomittedly this is a bit stilted and muy rct seem
;;; tO Ssay the same thing, but 1T coes produce the desired results.

{TEST-RULE?
IF TRE FIRST TARGET'S DIESEL ENGINE IS GREATER-THAN 5 TONS
AKND THE 100 FOOT LOKG SHAFT OF IT IS VERY-PROSABLY TWIN-SHAFTED
THEN THE TARGET IS A KZUTRAL SURFACS-VESSEL WITH CONFIDINCE 60
AND DECRZASE THE PRIORITY OF THE US-RAVAL-SURFACE HYPOTHESIS.
((1S-AND (IS-AND (IS-GREATER-THAN TARGET ENGINE STONS 100)
(IS-SAME TARGET ORDINALITY FIRST 100)
(IS-SAME ENGINE POWER-SOURCE DIUSEL 100))
{IS-AND (15-SAME TARGET SHAFT TWIN-SMAFTED 73)
(IS-SAME SHAFT LENGTH 100FT 100)))
(1S-AND (CONCLUDE {1S-SAMZ TARGET ATTRIEBUTE SURFACZ-VESSEL 60)
(IS-SAMZE SURFACE-VESSEL ALIGNMENT NZIUTRAL 103))
(CONCLUDE (IS-SAME HYPOTHESIS FRICRITY ASSIGN-LCWER-VALUE 100)
(IS-SAME HYPOTHISIS CLASS US-NAVAL-SURFATE 100)))))

PAR A

-
CREY

L
o

Appendix F How to make Changes to the
System

l' /l' l' .‘

F.1 Grammar Changes

Changing the grammar of the program is a simple matter, much the same as adding or
deleting a node from a linked list. To add a new node to the grammar tree, the name and a test
to be used for it must be inserted into the node directly above it. This is achieved by adding
the name of the new node to its ancestors’s part-list, and adding the test to the corresponding
position in the test-list. After this the new node can be defined by making it an instance of the
flavour Sentence-parts. At the same time the component parts of the node and their associated
testscan be specified, along with another variable, Significant?. This logical variable specifies
whether the node-name should be placed in the parse-list if the node is found.

Suppose, for example, you wanted to change the grammar so that a confidence phrase

could be used in an imperative simple-statement. All that would be necessary here is an

- addition to the initialization commmand that creates the instance IMPERATIVE. Opt would
be placed at the end of the test list, and CONFIDENCE-PHRASE at the end of the parts list.
If you wanted to create a different type of confidence phrase, perhaps allowing a relator such as
“greater-than,” you would follow the same procedure, adding the name of the new confidence
phrase to the parts list of IMPERATIVE. After that you would have to make a new instance of

- Sentence-parts using the name of the new confidence phrase. The commands necessary would '_::ij.-:;:‘
- look something like this (depending on which parts and which test were desired): ':;\:;;:;
(defvar NEW-CONFIDENCE-PHRASE nil) t.._.

(setq NEW-CONFIDENCE-PHRASE (make-instance 'SENTENCE-PARTS -

‘test '(OPT MAN OPT MAN) RS

:parts ’(WITH CONFIDENCE-SYNONYMS RELATOR CLEVEL) O

: :significant? T)) i
L e

The user must be careful when specifying certain tests. Exor, OOB (one-or-both), and
Double-List all take more than one part. The parts associated with these then must be
enclosed in parentheses, inside the parts list.

If the new node is to be inserted between an ancestor and its descendant, the name of the
K descendant should be put on the parts list of the new node, and its test on the test list. S
To delete a node from a tree it is a simple matter of removing its name from the parts list e
of its ancestor, and the test from the test list. Again, if the node to be deleted has descendants, N :,'-::
and the user wishes to keep them in the grammar tree, their names and tests should be inserted s
K -
- 25 =

B NEENA

................
...........................

into the ancestor node.

F.2 Adding New Tests

If the user finds that he needs a new test for a certain node, he need only define the
function and insert its name into the test-list where the node is called. The program will be
clearer and less cluttered if the user defines his function using existing tests. Both Exor and
0O0B, for example, were written by combining the basic functions man and Opt using different
conditions. With a basic understanding of how the program works and a bit of imagination
the user should be able to write almost any test using only the existing ones. If the user writes '.‘_::'.‘_:: J
a function that checks for a terminal node, the function should include a call to the function s

Gettoken to get a new word. The function should also set the variable word? which will E"*
ensure that the word itself, not just the type of the word, is added to the parse list. AN
e

F.3 Adding to the Vocabulary :';:;.;Z}
Rt

=2

Adding to the vocabulary is an easy if inconvenient job. New words are simply inserted %

into the appropriate list at the beginning of the file containing the parser. Note that adding
the word “fill” to the noun list does not mean that the program will understand “gl1” if it is
used as a verb. If the word being added to the vocabulary normally contains a single slash, the
word should be input with a double one.

»
-~

% % "‘:n‘.
VO

‘A
&L

Appendix G A Listing of the Parser’s
Functions .

;;; perform-test is the driving routine of the parser. It gets from the sentence component
;::; that called it the gifferent parts that must be present for that sentance component to exist.
:;: It tests for the presence of these by calling the test specified for sach of the component parts.

(defmethod (sentence-parts :perform-test) ()
(prog (test-1ist parts-1ist ind-test ind-part
success result~1ist answer)
(setq test-list test)
(setq parts-11st parts)
(setq result-11st ())
(setq answer ())
io0p
(setq ind-test (car test-14st))
(setq ind-part (car parts-iist))
(setq test-list (cdr test-1ist))
(setq parts-list (cdr parts-list))
(cond
((setq success (funcall ind-test ind-part))
(cond
((eq ind-part *simple-stmt)
(setq stmtnum (addl stmtnum))
(setq success (11st success))))
(cond
(result-1tist
(setq resul-1ist (append result-l1ist success)))
(T (setq resylt-list success))))
((equal ind-test ’opt)
(setq success T)))
(cond ((not success)
(return ntl))
({(nul) test-list)
{cond
(answer
(setq answer (append result-11st answer))) N
(T (setq answer result-list))) T Y
(return answer)) E
(T (go loop)))))

27

Appendix G

;:; Man tests rfor the existence of one sentence-part by calling perform-test. If the
;i: part exists, 1t returns the part; 1f not, 1t returns ni), as the part is mandatory.

(defun man (part)
(prog (result signif)
(cond
{(setq result (send (eval part) ':perform-test))
(cond (word?
(setq result (11st (cons part result)))
(setq word? ni1))
((setg signif (send (eva)l part) ’:significant?))
(setq result (append (list (cons part stmtnum)) result)))
(T
(setq result (append (113t (cons part 'd)) result))))
(setq error ntl)
(and trc2 (format T * is a ~a ~X* part))
(return result))
(T
(cond
(part-error)
(T
(setq part-error part)))
(ang trc2 (format T ° no ~a %" part))
(return nt1)))))

i;; Opt checks for the existence of en ootional sentence-part. It does this by calling
is; perform-test for the sentence-part 1t was supplied.

(defun opt (part)
(prog (result signif temp-start temp-end temp-word)
(setq temp-start start-word)
(setq temp-end end-word)
(setq temp-word werd)
(cond
({setq result (send (eval part) °’:perform-test))
(cond (worg?
(setq result (1ist (cons part result)))
(setg word? nil))
((setq signif (send (eval part) °:significant?))
(setq result (append (1ist (cons part stmtnum)) result)))
(T
(setq result (append (11st (cons part 'd)) result))))
(setq error nil)
(ang trc2 (format T * forms an opt ~a ~X " part))
(return result))
(T (and trc2 (format T " no opt ~a =X * part))
(setq error nil)
(setq start-word temp-start)
(setq end-word temp-end)
(setq word temp-word)
{return nt11)))))

;:s Exor 1s supplied two sentence-ocarts, only one of which should exist. The first sentence-part
;i; 18 checked, and if 1t is found to exist, the search stops. If it does not exist the second part
;:; 18 checkad for. If this does not exist either the srror flag 1s set.

(defun exor (part)
(prog (result)
(cond

((setq result (man (car part)))
(return result))

((setq result (man (cadr part)))
(return result))

(T (return n11)))))

3 5
I. L‘}.:
. e
i W hY
I\' Ll ll
Dy Appendix G oo
AL
X ;;: Oob 1s given two sentence-parts, one or both of which can exist, but only in the order supplied. ;n§~;
. e ¥
i {defun oodb (part) LY
(prog (result resultl)
- (cond QY
- ((setq result (man (car part))) R
v (cond e
e ((setq result2 (man (cadr part))) N
- (return (1ist result result2))) ;..,::.,
(T (return resylt)))) AN
((setq result (man (cadr part)))

(return result))
- (T (return n11)))))

;:; Double-11st checks & 1ist of parts to rind the first occurance of one of the parts.

L (defun double-list (11st)
(prog (signif s1ist result)
Yoop
{setqg slist (car Yist))
(setq 1ist (cdr 1ist))
(cond
((setq result {man slist))
(cond
((setq signif (send (eva) slist) ’:significant?))
(setq result (append (1ist (cons slist stmtnum)) result)))
(T
(setq result (append (11st (cons slist *d)) result))))
(return result))

(T
(cond S,
(11st
(go loop))

(T

(return n11)))))))
;:: List? checks whether the word currently being examined 1s on the word-11st 1t has been supplted. ‘

(defun 1ist? (wordliist)
(prog (temp-word)
(cond
((nu11 word) n11)
(T (cond
((memq word (eval wordlist)) -
(format T * ~a * word) e
(setq temp~word word) RERL
(setq word (gettoken)) S
(setq word? T) .
(return temp-word))
(T (setq error word)
(return ni11)))))))

;:; Spec? tests the word currently being processes against a specific word supplied to ft. R

(defun spec? (word?) <_u_f
(prog () b
(cond
({nul1 word) nil)

(T (cond

((equal word word1)
(format T * -a " word)
(setq word (gettoken))
(setq word? T)

{return wordl))

(T (setq error word)

(return n11)))))))

1"-fﬁ

O

Y

ey s W e VS

29

L wme e

T ey e, -, -,

NS e s v -

MRS N T B Rt B B B U L

o

D4 N «- ‘.
LSO RN W
Lasdatlad 4‘\'.‘

Appendix G

;i:Number? simply checks whether or not the word currently being examined 1s & number

(defun number? (&rest ignore)
(prog (number)
{cond
({numberp word)
(format T * ~g * word)
(setq number word)
(setq worg (gettoken))
(setg word? T)
{return number))
(7T
{(return n11)))))

i:: Main 13 the routine which controls the processing of the sentence. It prompts the user
;i; for the santence to be parsed and then calls perform-test. If the sentence 13 successfully
;i barsed, the parse tree is output along with other information and the user is prompted

ii¢ tO enter another sentence.

{gefun CIRCE ()
(prog (eof no-commas temp stopflg lrule rule-name sentdescr temp-user-in)

(setqg stopfig nil)
{setq sesston-1ist nil)
{setq temp-user-in nil)
{setq eof nil)
(setg user-in T)
(setq loaded-file nil)

(choose-user-options schoose-variables-1ists *:function 'readit)

{setq treY (y-or-n-p * Do you want to see the results of the parse? "))
(setq tre2 (y-or-n-p * Tracing messages? *))
{(loop while (not stopflg) do
{progn
{cong
((or user-in temp-user-in)

(setq temp-user-in nil)
{setq paragraph (string-upcase (with-input-editing-options
. ((:1nput-history-default sentdescr))

{prompt-and-read :string
* Enter the rules in complete sentences. To stop, type the word STOP. To
change user-options type OPTIONS.
N

s

Lee
tre

(T
(cond
{({y-or-n-p * Process rule from file? *)
(setq paragraph (car input-l1ist))
(setg input-1i1st (cdr input-11ist))
(cond
({equa) ** paragraph)
(setq stopflg T)
(format ¢ "~% The current file 1s empty."*)
(COND
({Y-OR-N-P * Quit (y) or change options (n)? *)
(SETQ PARAGRAPH “STOP"))
(t
((setq paragraph "OPTIONS"))))))
T
(cond
((y~or-n-p " Quit (y) or change oo tons {n)? %)

(setq paragraph "STOP*))
(7
(setq paragraph "OPTIONS"}))))))

30

-
e,

N.ad N
L
]

‘,
s
y Ay

e
:
*

'b Pl 1'. ¥ .‘.

L
2
v

DS o o

e

.

p St S r'—tn.-g_ -
[
v %

Appendix G

(setq sentdescr (string paragraph))
(cond
((equa) (string-rignt-trim *(#\.) paragraph) “options")
(choose-user-options schoose-variables-11ists *:function ‘readit))
((not (equal (string-right-trim *(#\.) paragraph) "STOP"))
(setq no-commas nil)
(setq start-word 0)
(setq eng-word 0)
(setq stmtnum 1)
(setq eos nil)

(l?ogowhtle (not no-commas) do 2:¢ This loop turns all commas into blanks
progn

Esetg temp (string-search-char <COMMA> paragraph))

con

((null temp) (setq no-commas T))
(T (aset (BLANK> paragraph temp)))))

(setq error nil)
(setq word (gettoken))
(setq fanswer (send stmt ’:perform-test))
{cona

(error (format T *"~X Error: Looking 7or a ~a but found ~a instead ~%"

part-error error)
(setq paragraph **))
((not eos)
(;formut T "ERROR: Finished before end of sentence."))

(cond
(trel
(grind-top-level fanswer)))
(setq Jrule (make-rule fanswer))
(gring-top-level lrule)
(print-rule irule)
{cond
((y-or-n-p * ls this what you meant? *)
(setq rule-name (prompt-and-read ’':expression "Enter a name for the rule "))
(setq Trule (1i1st rule-name sentdescr irule))
(%setq session-1ist (append session-11st (11st irule))))
(format T
*~% Re-enter the rule, rephrasing the incorrect) .
(setq temp-user-in t)))))) ’ v17 parsed portiont)

(T
(setq stopfig T)))))
(write-to-file session-1ist)
(return T)))

ii; Gattoken extracts the next word from the sentence input by the user. It changes
;i: the word into uppercase letters and converts 1t from & character string to an atom
;¢; to make 1t esasrer to process. Any blanks or punctuation marks are stripped from
;i; the word, and apostrophes are converted to number signs (/).

(agefun gettoken ()
(prog (word temp length location)
(cona
(eos (return nil))

((not (null end-word))
{-atq start-word (string-search-not-char <BLANK> paragraph end-w:.¢'))

(setq end-word (string-search-char (BLANK)> paragraph start-word))
{setq word (substring paragraph start-word end-word))

31

AR IR I I LI LN

Appeudix G

(setg word (string-right-trim °(#\.) word))
{cond
((setq location (string-search-char <APOS> word)) ;;; doesn’'t handle more than one - fix
(aset #\# word location)
(setq pword word)))
(cond
({muitiple-value (temp length) (parse-number word 0))
(cond
{(equal length (string-length word))
(return temp)))))
(return {(intern word)))
(T (setq eos T)
(return ntl1))})))

(defun pnoun? (word-list)
(prog (wordl)

(1gnore word-11st) ; later check wordlist supplied by calling routine...
(cond
{pword
(setq word? (intern (string-right-trim "#5° pword)))
(cond

((memq wordl n-11st)
(format T " ~a * word)
(setq word (gettoken))
(setq word? T)
(sstg pword nil)
(return wordt))
(Y
(setq error word)
(return nil))))
(T
{setq error word)
(return nil)))))
(defun write-to-ftle (1ispex)
(prog (f1le)
(cond
{session-1ist

(setq file (prompt-and-read ‘'(:pathname :default "D1:>JIMdrules.lisp®)
*~% Enter a file name to write to (default ts ~a) ~X"
*bl:>Jimdrules.11sp®))
(with-open-file (str file
*:direction ’:output
’:characters t
*:1f-exists ':append
*:1f-does-not-exist ’':create)

(dolist (element !ispex)
{send str :string-out (format nil "~3" element))))
(format T “~% Rules written to ~A® file))
(t
(format t "~% No rules to write*)))))

(defun readit (window varisble old-value new-value)
(prog (paragraph end?)
{ignore window old-value new-value)
(cond
((OR (eq variadble ’user-in) (EQ VARIABLE ’'FILE))
(cond
((eq file loaded-file))
(¢
(setq input-1ist nil)
(with-open-file (str file
*:direction *:input
*:characters t)
(loop while (not end?) do
(muitiple-value (paragraph end?) (send str °':1ine-in))
(sstq input-11st (append input-1ist (11st paragraph)))))
(setq Yoadea-file file)))))
{(return nt1)))

Y

[A VR A 7
't e ¢ 0 ¥
PR PR e
PARN)
I N

Yyt

LA A adecamr st

O AL s

Appendix H A Listing of the Translator

)>) describes the different sentence-structure types.

rr
. {defflavor sentence-types {parts ending)
c)
g :gettable-instance-variabdbles
) :settable-instance-variables
:initable-instance-variables)

‘Z (defvar s1 nil)

L (setq s? (make-tnstance 'sentence-types :parts ’'(subject active-verb) :ending °'()))
;;; example : "Fish swim.*

(defvar s2 nil)

(setq s2 (make-instance ’sentence-types :parts ’(subject active-verd direcct-object)
:ending *"((direct-object . noun))))
i:; example : *Jim writes programs.”

(defvar 33 nil)

(setg s3 (make-instance °’sentence~types
:parts ’'(subject active-verd indirect-cbject direct-object)

sending *((IN . noun))))
;i; example: "Me gave har presents.”

(defvar s4 nil)

(setq s4 (make-instance ’sentence-types :parts ’{subject copula-verd pred-noun)
sending ' ((pred-noun . noun))))
;:; example: "They are aliens.”

(defvar s5 nil)

(setq s5 (make-instance 'sentence-types :parts ’(subject copula-verd pred-adj)
:ending ’((pred-acj . adjective)))) '
;i example: *"She 1s ugly.*

(defvar s§ nil)

~(setq s6 (make-instance ’sentence-types .
:parts ’'(subject active-verb direct-object noun-compliement)
sending *((direct-objcct . noun) (noun-complement . noun))))
;:; example: "I ca’led him a fool.”

(defvar 87 n1l)

(setq s7 (make-instance ’sentence-types
:parts '(subject predicate direct-obj adj-complement)
sending *((direct-obj . noun) (adj-complement . adjective))))
;i: example: "Ann painted the bicycle purple.®

(defvar action-convert nil)

(setg action-convert °({assign . assign) (fincrease . assign-higher)
(decrease . assign-lower)))

33

AR A M A S A e g RN

Appendix H
(setq direction-check ’'((northerly . north) (northern . north) (southerly . south)
j— (southern . south) (easterly . east) (eastern . east)
(westerly . west) (western ., west)))
(defvar quality-check nil)

(setq quality-check ’({long . length) (away . distance) (distant . distance) (high . height)
{(tall . height) (deep . depth) (wide . width)))

" (cefvar predicate-check nil)

(setq predicate-check '{{greater-than-or-equal-tc . not-less-than)
{(less-than-or-equai-to . not-greater-than)))

(defvar speed-check nil)

{setq speed-check °*((faster . fast) (quickly . fast) (quick . fast) (slowly . slow)
(slower . slow)))

(defvar unit-check nil)
{setq unit-check '((hertz . hz) (feet . ft) (foot . ft) {pounds . 1bs) {meters . m)
(metres . m) (meter . m) (metrc . m) (kilometre . km) (kilometer . km)
(kilometres . km) (kilometers . km) (inches . in) (knots . kts)))
(defvar unit-convert nil)
ﬁ; (setq unit-convert *((hz . frequency) (1bs . weight) (tons . displacement) (kts . velocity)
- (km . distance) (in . length) (m . length) (ft . length)))
(defvar curclause nil)
(defvar default-confidence nil)
(setq default-confidence 100)
(defvar default-relation nil)
(defvar fnum nil)
(defvar framel nil)
(defvar mrel nil)

(gefvar modi nil)

- (defvar matt nil)
(defvar mval nil)
(defvar mconf nil)
.f (defvar confidence-convert nil)
- (setq confidence-convert ’'((positively . 100) (very-probably . 75) (probadly . 5C)
- (potentially . 25) (possibly . 0) (potentially-not . -25)
" (probably-not . -50) (very-probably-not . -75) (not . -100)))

{defvar direction-check nil)

34

Appendix H

(defvar pobj nil)
(defvar patt nil)
(defvar pval nil)

(defvar sentence-type nil)

;:; classify identifies the basic structure of the sentence (one of seven different structure types)

(defun classify (stmt)

*Classify examines the parse of a simple statement to determine what type of structure {t

has.*
(prog ()
(cond
((assq ’copula-verb stmt)

{(cond
((assq ’pred-noun stmt)
(return ’"s4))
(T
(return ’s$))))
(T
{cond
((assq 'objects stmt)
(cond
((assq ’'direct-object stmt)
{cond
((assq "compiement stmt)
(cond
((assq ’noun-comp stmt)
(return 's6))
(7T
(return *s7))))
(T
(return 's2))))
(T
(return ’s3))))
(T
{return *s1)))))))

;:; Breaker separates the parse tree 1nto the component statements and returns the number of statements

in the parse

(defun breaker (Brule)

"Breaker separates the parse tree into the component statements and returns the number of

statements in the parse."
(prog (subnum substmt)
(setq brule (cddr brule))
(setq subnum 1)
lo0p1
(setq substmt (car brule))
(setq brule (cdr brule))
(cond
(substmt
{cond

((equal (car substmt) (cons ‘simple-stmt subnum))
(set (intern (format nil "SUBSTMT~D" subnum)) substmt)

(setq subnum (addl subnum))))
((go Yoop1))
T

(return subnum))})))

35

PP L N Al L e Pt YR AN NS e N A N A R O P S L N N

. o o <
:{-
o
x Appendix H
uxf ;:: Subject puts the subject of the sentence into the global variable “matt” and puts
8.~ ;:: any prepositional noun or possessive noun into *"mobj.* If there are adjectives modifying
L ;i: any of these, the subroutine Extract-adj 1s called to make a separate frame to include
;¢; each adjective.
f} (defun subject (subphrase)
RS “Subject identifies the subject of the phrase supplied to it, as well as any prepositional
W nouns, possessives, or modifiers.”
-~ (prog (subl subsub temp pro)
:{- ;:; get the possessive noun first -~ 1f there 1s one
(cond
((setq temp (cor (assq 'poss-noun subphrase)))
(setq mobj temp)
(setq subphrase (extract-adj subphrase ’poss-noun mobj))
(SETQ POBY MOBJ)))
;2; get the subject of the sentence (1if 1t 1s a
. ::: pronoun 1t takes the subject from the previous sentence.
(setq subl (10iff subphrase (memass ’eq 'prep-phrase subphrase)))
(cond
o ((setq pro (assq ’'pronoun subl))
e (SETQ MATT PATT))
((setg temp (cdr (assq "noun sudl)))
3 (setq matt temp)

(setq sub1 (extract-adj sub? (car (rassq matt subl)) matt))
(SETQ PATT MATT)))

7:: finds the noun in the prepositional phrase,
222 1F there 1s one
(cond
{(setq subsud (memass ‘eq ’'prep-phrase subphrase))
(COND
((setq pro (assq ’pronoun subphrase))
(SETQ MOBJ POBJ))

\
o

‘r
l‘l

- (7T
> (setq mobj (find-after *preposition 'noun subsub))
S (extract-adj subsud (car (rassq modj subphrase)) mobj)
(SETQ POBJ MOBJ)))))
(return T)))
- ;7; Predicate finds the predicate in the statement being examined. It first decides whether
"L ;:;: the verb in question 1s an active or a copula verdb. If it 1s a copula verdb 1t searches for
ol ;:; any adverbs that might qualify the verd, such as “greater-than® or "less-than.” If the
B ;7; copula verb is "equals’ or "is® It 1s convarted to something more uniform. The routine also
o ;;; checks 1f there 1s a confidence leve! indicator following the copula verb, such as "possidbly” or
) ;:: "probably-not.’
. ;i 17 the verb 1s an active verb 1t 1s used as the relator. The routine checks for adverbs
- ::; after the verb such as "quickly” or “quietly,” and, 1f any are found, converts them to
- ;:: their adjective form and creates a frame for them.
- (defun predicate (subphrase)
- *Predicate identifies the verb in the phrase or sentence supplied to it. It does not
‘ return any variables; it does however set the global variable mrel, and it may change the
- global variable mconf."
. (prog (k111 subsub advrd END copverd att val temp)
- (cond
- 12 checks 1f thea verd 1s copula
.

— p e n a - SR L diee e B AL 06 T 4 AL R TELTS TR AR LT

Appendix H

((setqg copvert (find-after ’'predicate ’'copula-verd subphrase))
(setq kt11 (memass ‘eq 'objects subphrase))
(setq subsub (181ff subphrase kill)})
(cond
((setq advrd (find-after ’'predicate ’'copula-adverd subsub))
(setq mrel (intern (format nil “~D-~D" copverb advrd))))
((eq copverb ’equals)
(setq mrel ’is-equal-to))
((eq copverd °'is)
(setq mrel 'is-same))
(T
(setq mre! copverb)))
(cond
((setq advrd (find-after ’predicate ’confidence-level subsub))
(setq mconf (cdr (assqg advrb confidence-convert))))))

2:: The verdb must be active
(T
(setq mrel (find-after 'predicate ’active-verb subphrase))
(SETQ END (SEND (EVAL SENTENCE-TYPE) :ENDING))

{cond "
;2: 1f the ending of ths santence 1s nil e
;:: do not remove the adverd 1f there 13 one L
77; It will be used as the valus of the "]
;i: primary clause. A
((NOT END))

;s Otherwise, remove any adverbs and MO
© ;::; make secondary clauses with them. RARr
((setq advrd (cadr (memass ’'eq ‘adverd subphrase)))
(setq att (car advrd))
(setq val (cdr advrd))
(cond
((setq temp (assq val speed-check))

{setq val (cdr temp))))
(cond
((setq temp (assq val direction-check))
(setg val (cdr temp))))
(setq curclause (append curclause (11st
(11st ’is-same matt att val default-confidence))))))))

(return T)))

(defun find-action (subphrase)
(prog (temp mod rel)
(setq mrel (find-after ’predicate ’active-verd subphrase))

(cond
((setq temp (assq mre) action-convert))
{cond
((eq (cdr temp) ’assign)
(cond : 5
((setg mod (assq ’level subphrase)) e
(%sezq rel (intern (format ni1 "~D-~D-VALUE" (cdr temp) (cdr mod))))) e
(setq rel ‘assign-value)))) -
(T S
(setq rel (intern (format nil *~D-VALUE®* (cdr temp)))))) y
(setq mrel ’is-same) !?_~
(setq mval rel))))) e
7i; Ending uses the sentence-type of the statement to determine what typs of word should be the ending. ;?:Q
i;i It also checks the end of the sentence for a confidence-level. If 1t locates one it sets the gloda!l S
variable “mconf.* P
o

P T I S I T IR
P G . <
jd

‘.- [l ..n - '. ..- . -.’ - ..Q .A."..'.,' . .
A O LA AR SRR

Thiav | S 3 - W M y - y . R i T o sl aun)
RS N IR S R . e L Ll o m N H T a VT aTa™TuT et e e - - e PR O s v - - .

: " Appendix H

(defun ending (phrase)
*Ending finds the word that should be placed in the global variable mval, and sets this

- variablies appropriately. It may change the value of mconf tf it locates a confidence-leve)
' indicator at the end of a sentence.”

(prog {subphrase subsub temp unit val end)
{setq subphrase (memass ’eq ’predicate phrase))

;:;; asking what type of ending to expec

5 (setq end (car (send (eval sentence-type) :ending)))

;:; The ending is & noun
(cond

((eq (cor end) ’noun)

(setq mval (find-after (car end) (cdr end) subphrase))

(SETQ PVAL MVAL)

{setq subsub subphrase) S

{extract-adj subsub ’noun mval)) O0s
2:: The ending 1s an adjective o Sad

;32 or perhaps an adverd -
(T AR

{cond S

2:: handles adjectives first o

((setq SUBSUB (memass ’eq ’adjective subphrase)) A
(setq mval (cdadr subsudb))

- (SETQ PVAL MVAL) - A
g . 2:;: Changes the representation of ‘“"‘
23: numeric measurements .
(cond
((setq temp (assq ‘unit subsub)) el
(cond - S
- ({setqg unit (cdr (assq (cdr temp) unit-check)))) el
(T
. (setq unit (cdr temp)))) A
(setq mval (tatern {format all *"~D~D" mval unit))) !

e (SETQ PVAL MVAL}))

PR
rh e

3:; Sets the global attribute matt to
ii; the class of the adfective if the
;:; variable hasn't yst been set

[

(cond
((eq matt ’attribute)

- (setq matt (caadr subsud))))

:: Eliminates the two conses that
2: refer to the adjective

*
. W,

P
,

(setq subsud (delg (car subsub) subsub))

r

(setq subsub (delq (car subsub) subsub)) :;i;

. (cond -
3 ((memass 'eq 'adjective subsub) i“

(extract-adj subsub nil mobj)))) s

. 7:; Looks for an adverd ending o
e {(setq subsub (memass 'eq ‘adverd subphrase)) TR
ay (setg mval (cdadr subsub)) S
(SETO PVAL MVAL) - 3
' (cond i

((eq matt 'attribute) . E

(setq matt (caadr subsub)))))))) S

;:; Looks for a confidence level clause el

(cond i

. ({setg val (find-after °‘predicate 'Clevel subphrase)) R
< (setq mconf val))) R

(return T))) E

< S v ". - - - .
A R P TR N S P e P R
PRI P AT o SR I SO AT DD PP)

*y
)
Y
A
LA

Appendix H

ae
Pl

e by Yy &y

ol
l. '.‘ ‘1- ". .l. 'l.‘.‘l

e

;:; Extract-adj rinds all the qualifiers before the word contained in “befors”® and creates a
;:; frame using the relation "is~same,” the word modified as ths object, the classification

. ;i of the modifier as the attribute and the modifier itself as the value. The confidence-leve! oS
' ;:; 18 always 100. After the frame has been created the modifier is removed from the

A ;;; statement to prevent 1t from baing “found” again. L_.—
. {defun extract-adj (subphrase before modified) :

(prog (adj unit-type temp att val)
{(loop while (setq adj (find-before before adject1ve subphrase)) do

" {(cond
((eq (car adj) ’number)
(setq unit-type (find-after 'number ‘unit subphrase))
(cond

{((setq temp (assq unit-type unit-check))

(setq unit-type (cdr temp))))
(setq val (intern (format nil "~D~D* (cdr adj) unit-type)))
. (cond
v ((setq temp (find-after *adjective "quality subphrase))
(setq att (cdr (assq temp quality-check)))
(setq subphrase (delq (assq ‘quality subphrase) subphrase))
(setq subphrase (delq (assq ‘adjective subphrase) subphrase)))

w::' ((setq temp (assq unit-type unit-convert)) O

1 (setq att (cdr temp)))
o (T .

L (setq att ’‘measure))) T

(setq curclause (append curclause s

(1ist (1ist ’ts-same modified att va) default-confidence)))) E:::

e (setq subphrase (delq (assq "adjective subphrase) subphrase))
. (setq subphrase (delq adj subphrase))
ok) (setq subphrase (delq (assq ‘unit subphrase) subphrase)))
. (T
- (setq curclause (append curclause -
= . (11st (11st *is-same modified (car adj) (cdr adj) default-confidence))))
(setq subphrase (delq adj subphrasc))
(setq subphrase (0elq (assq ’adjective subphraso) subphrase)))))
(return subphrase)

:: N
. ;i Make-rule takes the whole of the parse and controls 1ts conversion into Lisp code. It goes
= 2:; through the parse by removing the first element from the parse 1ist. If this is a simple-statement

;:: then depanding on 1ts sentence-type ons or more of Subject, Predicate and Ending are called
= ii; to identify the various parts of the parse. The routine starts out assuming that all of the
- ;i; simple-statements found are in the premise clause. When the routine encounters "Action” MO
- ;77 as the next element on the 11st then this default assumption 1s changed and the remaining e

rr

- :;; statements are processed &s action statements.

s

. (defun make-rule (e-rule)
e sMake-rule controls the translation of the parse-1ist into 1isp code. It outputs

- the completed 1isp rule.® E;_
| (prog (premise action substmt subnum default-relation premise?)
» (setq premise (11st ’is-and))
.. (setq action (11st ‘is-and))
o (setq subnum 1)
- (setq premise? T)

.

’
Lo
PO

(setq default-relation ’is-and)

: (set-values~default)

E loop1
= (setq mrel default-relation) o
< (setq mconf default-confidence) e
e (setq substmt (car e-rule)) o
- (setq e-rule (cor e-rule)) o
" :': (cond ‘.::‘
a (substmt A

{cond

- ((equa) (car substmt) (cons *simple-stmt subnum)) -
e (setq substmt (killer substmt)) e
w (setg sentence-type (classify subsim:)) o
e (sstq fnum 1) oy
- (cond 39 -
.0 (premise? ;?

i
ot

Appendix H

(setq mrel ’is-same)
(cond
{(assq ‘'declarative substmt)
(subject (1diff substmt (memass 'eq ’predicate substmt)))))
(predicate substmt)
(ending substmt)
{cond
((eq modj ’object)
(setq mobj matt)
(setq matt "attribute)))
(setq framet (1ist mre! modj matt mval meonf))
{setq curclause (append (1ist default-relation) (append (11st framet)
curclause)))

(setq premise (anpend premise (list curclause)))
(setq curclause nil)

(setq subnum (addt subnum)))
(T
(cond
((assq "declarative substmt)
(subject (101ff substmt (memass ‘eq ’predicate substmt)))
(ending substmt)
(predicate substmt))
((assq 'copula-verb substmt)
(setq mobj matt)
{subject substmt)
(predicate substat))
T

(

(subject substmt)
(find-action substmt)))
(cond
((eq mobj "object)
(setq modbj matt)
(setq matt ‘attridute)))
(setg framel (11st mrel modbj matt swval mconf))
(setq curclause (append (11st default-relation) (append (list framet)
' curclause)))

(setq action (append action (1ist curclause)))
(setg curclause n1l)
(setq subnum (addl subnum)))))

((eg (car substmt) ‘action) L
{(setg premise? nil) : tan "
(setq default-relation 'conclude)
(set-values-default)))

_(rso leopt))

(return (11st premise action))))))

i:: Set-valuss-default sets the defaults for some of the global varisbles whoss valuss may change fregu e,
ently o
| b
(defun set-values-default ()
(prog ()
(setq mrel ntl) SR
(setq mobj ‘object)

(seta matt ‘attribute)
(setq mval °‘value)))

2:: K11ler gets rid of all the deacwood 1n the parss tree. .,
(defun ktller (word-array) ::: ::
(m'oog getum) G
oop o,

(cona ...‘u.

((setq getum (rassoc "d word-array)) —

(setq word-array (delg getum word-array))) - _\

T al

(return word-array))) _" -

(go 100p)))

Pl ¥ L BN A6 N R L0 P R R 0 vy AR, B) s S e i A
'T ~
AN

i

Appendix H

:2: Pind-after finds the first occurance of “part® after the ssntence-structure “after”

(defun find-after (after part inlist)
(prog ()
(setq inlist (memass *eq after inlist))
(setq after (cdr (assq part inlist)))
(return after)))

::: Pind-before finds the first occurance of “part” before ths sentence-structure “before”

(defun find-before (before part inlist)

(prog ()
(return (cadr (memass ’eq part (1diff inlist (memass ‘eq befors inlist)))))))

;:: The following declaration and functions translate the 11sp cods generatad
::: by the translator back into English, thus completing the whole circle.

(DEFVAR pnum 0)

(defun print-rule (rule)
(prog (prem conc)
(setq pnum 0)
(setq prem (car rule))

(setq conc (cdr rule))

(format T *~% IF *)

(print-clause (cdr prem) T)

(format T * ~% THEN ") .
(print-clause (cdar conc) nil)))

(gefun print-clause (clause premise?)
(prog (inc indent subsub verd)
(dol1st (subphrase clause)
(setq pnum (addl pnum))
{setq inc 0.1)
(setq tndent **)
(setq subsub (cdr subphrase))
(co11st (sentence subsud)
(setq sentence (car subsub))
{setq subsudb (cdr subsub))
(cond
((eq (first sentence) ’is-same)
(cond
(premise?
(setq verd ’is))
(T

(COND
((NEQ INC 0.1)
(SETQ VERB "MATCH))
(v
(setq verd ’‘set))))))
(7
(setq vert (first sentence))))
{cond
{premise?
(format T *~g ~d) The ~d of the ~d ~d ~d° indent (plus fnc pnum)
{third sentence) (second sentence) verd (fourth sentence)))
T
((format T *~D ~d) ~D the =~d of the ~d to ~d" indent (plus inc pnum) verd
(third sentence) (second sentence) (fourth sentence))))
(cond
((neq (fifth sentence) 100)
(format T * with confidence ~d% * (rifth sentence)))
(T
(format T * ~% LB})]
(setq indent * *)
(setq inc (plus inc 0.1))))))

4|

> UNLIMITED DISTRIBUTION

= UNCLASSIFIED -

- Security Classtiasiton -

- DOCWENT COMTROI. DATA - R&D .

" 1Srcurny clesnfication of titie. body of g fon Aust be entered when the cvevsii document « claestwed) .

o 1 ORIGINATING ACTIVITY 28. DOCUMENT SECURITY CLASSIFICATION :
UNCLASSIFIED

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC

v
v

4y

s
.

20. GROUP

1]
0y

3. DOCUMENT TITLE

s s
(]

aev e
O

Circe: A Natural Language Rule Translation System for Intersensor

. ¢ DESCRIFTIVE NOTES (Tvom of repert snd incknie dttet! 1R CHNICAL COMMUNICATIONS O

R 5. AUTHOR(S) (Last name, first neme, muddle wnitiel)

'.' Chal

ol ELLIS, JAMES R., and DENT, C. Ann

6. DOCUMENT DATE 7s. TOVAL NO. O4F7’AGES Tp. NO. OF RERS 12

NOVEMBER 1885
8. PRODJECT OR GRANT NO. %o ORIGINATOR'S DOCUMENT NUMBER!S!

DREA TECHNICAL COMMUNICATION BS5/314

8b. CONTRACT NO. Bb. OTHER DOCUMENT NO.(S) (Any other aumbers thet mey be
sugnet; thws document)

= 10. DISTRIBUTION STATEMENT

Approved tor public release} ;

Distribution Unlimited :

) 11, SUPPLEMENTARY NOTES 12 SPONSORING ACTIVITY
13. ABSTRACT

o . Circe is a set of functions written in Lisp as an experiment in natural language processing.
It was developed for knowledge acquisition by the Intersensor system, a sonar knowledge-based
s inference system. Tke main function of Circe inputs from either the keyboard or a file a rule
e written in English and converts it into a Lisp-like data structure. This conversion takes place in
L two steps: the English text is first parsed, and then the relevant information is extracted from
the resulting list and assembled into rules. These rules are then written to a file where they n
can be used directly by the inference mechanism of Intersensor without further processing.

)

The paper briefly reviews prior research at DREA in this area, and contrasts the current
system with its predecessors. Implementation problems are discussed, and suggestions for
improvements are given,

e ity O
g a0 .

LA AL i CRTRTRFY

e

.

“ElL

A

b

A

e
..,

UNCLASSIFIED

Security Classication

KEY WORDS

NATURAL LANGUAGE PROCESSING

SYNTACTIC PARSING OF NATURAL LANGUAGE
AUTOMATIC TRANSLATION OF NATURAL LANGUAGE RULES
NATURAL LANGUAGE INTERFACES FOR KNOWLEDGE ACQUISITION

OBJECT-CENTEREL PROGRAMMING

2

Je.

INSTRUCTIONS

ORIGINATING ACTIVITY Entar the neme end sddvess of the
the &

DOCUMENT SECURITY CLASSIFICATION. Enter the oversit
wecurity of the ncluding speciel warnmng
1orms whenaver nophaoh

GROUP: Enter security ¢ 1 bor. The thwee
roups are defined n Agpendix ‘M of m DRB Sowmv Aoguiations.

DOCUMENT TITLE: Enter the compisie document title w o
caonat letigrs. Tittes wn ol coses MM be unciswsihed, i 8
withicentiy i utle e euwh-
cation, show title classitication mm the usua! one-capetai-letter
adbbrevistion 11 par g the ttle.

DESCM"IVE No'rts Enlw e cetegory ot document, e.g.
report, | note O¢ t igtter. It spproper

ate, enter the type of document. e.g. 1nterym, progress,

sumenary, annusl or tinal. Give the ‘nciuswe detes when &

wecific reporting period is covered.

AUTHOR(S): Enter the nemais) oF suthor(sl as shown on or

in the document. Entar last name, first neme, Middie initiel,
1f mufitary, show renk. The neme of the principal Juthor is sn

QU

DOCUMENT DATE: Enter the dais (month, vesr) of
Estadlishment spprovel for of the d

TOTAL NUMBER OF PAGES: The 10tsi page count shouid
follow normsl pagnstion procedures. i.¢., enter the Aumber
of peges contamning information.

NUMBER OF REFERENCES: Enver the 19tal number of
references cited in tha document.

PROJECT OR GRANT NUMBER. It sporopriste, enter the
A0DICADIS research and duvelopmen: project o7 grent number
under wich 1he GOCUMENt was written,

. CONTRACT NUMBER Il spproprists, enter the spplicable

nuNder under winch the document was written.

ORIG NATOR’S DOCUMENT NUMBERIS): Enter the
r 1.1 document numner By whiet. the cocument will be
niennhixl 30 controlied Dy the onginsting sctwity. Tha
number must be Que 10 this O

9. OTHER DOCUMENT NUMBERLS): It the document hes been
assigned sny other document numbers (either by the orepnator
of by the sponeor], siso enter this Aumberis).

10. mmtaunbn STATEM!NT Enter eny liavitanoms on

other then those mposed
bvmnvchmlmnn mwﬂmmwu

(1) "Qualified requesters may obian copim of ths
trom their documenistion

conter.”
(20 “A ond di ingtion of this d
5 POt authorized without prior approvel from
OrIgIEtIng activity.”
11, SUPPLEMENTARY NOTES: Use for sdditions! euplenstory
nates.

12. SPONSORING ACTIVITY: Enter the name of the depersmentst
project otfice or sboretory 1ponmoring the resssrch and
development. include address.

13. ABSTRACT: Enwnmmmuw“lmd
vy of the ph it may siso PO
um-mmwvonnm-m It is highty
desiwsble that the simtract of clasified documents be uncisssi~
fied. Esch paragraph of the sbeiract thell ond with en
indication of m-numv clomsilicstion of the infermetion

in the persgraph (uniess the document el in unclsssified)
represented 8s (TS), (8), (C), (M), or (U
The length of the et should be limited w 20 singte

stenderd typewritien lines; 7w nches long.

14. XEY WORDS: Key words are tachnically mesningiul terme or
ShOrt phrases that CASraCternze ¢ document end could be heipbul
in cateloging the document. Koy words should be wiected 0
that nO secunity e‘nlmmlon " roquired. identifiers, woh e
modei ok t1race naTme, THINETY Project oode
name, mlphicloenm mvuwuiwmwﬁl
be f d by en

44

’ .

NN

’

»

——

- v

